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ABSTRACT

Proper scoring rules provide a theoretically principled framework for the

quantitative assessment of the predictive performance of probabilistic fore-

casts. While a wide selection of such scoring rules for univariate quantities

exists, there are only few scoring rules for multivariate quantities, and many

of them require that forecasts are given in the form of a probability density

function. The energy score, a multivariate generalization of the continuous

ranked probability score, is the only commonly used score that is applicable

in the important case of ensemble forecasts, where the multivariate predic-

tive distribution is represented by a finite sample. Unfortunately, its ability to

detect incorrectly specified correlations between the components of the mul-

tivariate quantity is somewhat limited. In this paper we present an alternative

class of proper scoring rules based on the geostatistical concept of variograms.

We study their sensitivity to incorrectly predicted means, variances, and cor-

relations in a number of examples with simulated observations and forecasts,

and show that the variogram-based scoring rules are distinctly more discrim-

inative with respect to the correlation structure. This conclusion is confirmed

in a case study with post-processed wind speed forecasts at five wind park

locations in Colorado, U.S.A.
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1. Introduction27

During the last two decades a paradigm shift has occurred in the practice of numerical weather28

prediction (NWP). To account for the various sources of uncertainty in the NWP model output,29

ensemble prediction systems were developed and have now become the state-of-the-art in me-30

teorological forecasting (Buizza et al. 2005; Lewis 2005; Leutbecher and Palmer 2008). Those31

ensemble forecasts aim to represent the range of possible outcomes, and probabilistic statements32

like the probability of exceeding a certain amount of precipitation can be derived from them and33

help making informed decisions.34

Along with the availability of probabilistic forecasts comes the need for both diagnostic and35

quantitative methods to assess the quality of those forecasts and to compare the performance of36

competing forecasters. A probabilistic forecast should be calibrated, i.e. statistically consistent37

with the values that materialize, and sharp, i.e. very specific about the anticipated weather (Gneit-38

ing et al. 2007). Sharpness can be assessed via numerical and graphical summaries of the width39

of the prediction intervals that come with a predictive probability distribution. The notion of40

calibration is more complex, and different types of calibration have been established. Marginal41

calibration measures the similarity of the aggregated predictive distribution and the climatological42

distribution of the predictand, and can be checked by comparing the average predictive cumulative43

distribution function (CDF) with the empirical CDF of the observations (Gneiting et al. 2007).44

Probabilistic calibration concerns the dynamical aspects of probabilistic forecasts and can be as-45

sessed by studying verification rank histograms (Anderson 1996; Hamill and Colucci 1997; Hamill46

2001).47

In order to make a quantitative comparison of different forecast methods, summary measures48

of their predictive performance are required. Those measures should take both calibration and49
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sharpness into account. To this end, scoring rules have been proposed which assign a numerical50

score S(F,y) to each pair (F,y) where F is the CDF of the predictive distribution and y is the51

realized value. If we take scoring rules to be negatively oriented, S(F,y) can be viewed as a52

penalty that the forecasters wish to minimize. A crucial property that one should always require53

from a scoring rule is that it is proper, which is formally defined by the requirement54

EG S(G,Y )≤ EG S(F,Y ) ∀ F,G, (1)

where EG S(F,Y ) denotes the expected score of the forecast CDF F when the verifying observa-55

tions y are realizations of a random variable Y with CDF G, and ∀ means “for all”. The score is56

strictly proper if the equality holds only if F = G (Gneiting and Raftery 2007). Using only proper57

scoring rules is important in practice because the above inequality implies that a forecaster who58

knows the true distribution G has no incentive to predict any F 6= G, and is encouraged to quote59

her true belief. It has been demonstrated that the use of improper scores can lead to misguided60

inferences about predictive performance (Gneiting 2011).61

The notions and methods mentioned above refer to probabilistic forecasts of univariate quanti-62

ties. In some applications, however, multivariate quantities are of interest where multivariate can63

either refer to several different weather variables, or to a single variable considered at different64

locations in space or points in time simultaneously. River basin streamflow forecasts, for example,65

rely heavily on the meteorological inputs, and the runoff of mountain streams in spring season de-66

pends on both temperature (because of its impact on the amount of melt water) and precipitation67

amounts. It is therefore important to know if an observed temperature above the predictive mean68

is likely to be associated with observed precipitation amounts above the predictive mean. If there69

is a positive or negative association between those two variables it should be reflected by the joint70

probabilistic forecast. Moreover, simultaneous consideration of all locations in the river basin71
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and several lead times may be required. A recent article by Wilks (2014) considers probabilistic72

forecasting of heat waves, which requires the simultaneous study of minimum temperature and73

dewpoint temperature at two consecutive days, and Feldmann et al. (2014) study statistical post-74

processing models that yield calibrated temperature forecasts simultaneously at several locations.75

A number of multivariate generalizations of the verification rank histogram have been proposed76

(Smith and Hansen 2004; Wilks 2004; Gneiting et al. 2008; Thorarinsdottir et al. 2014; Ziegel77

and Gneiting 2014) that are sensitive to misrepresentations of both univariate characteristics and78

correlations between the different components of the multivariate quantity under consideration.79

As far as proper scoring rules are concerned, the forecast verification toolbox is still rather80

limited. On the one hand there is the energy score (ES) and generalizations of it (Gneiting and81

Raftery 2007)82

Sen(F,y) = EF‖X−y‖− 1
2

EF‖X−X′‖

where X and X′ are independent random vectors that are distributed according to the multivariate83

CDF F and ‖ · ‖ is the Euclidean norm. The energy score has the appealing property that it gen-84

eralizes the univariate continuous ranked probability score (CRPS, Hersbach 2000) and is readily85

applicable also to ensemble forecasts. It has been pointed out, however, that this score is often86

not sufficiently sensitive to misspecifications of the correlations between the different components87

(Pinson and Girard 2012; Pinson and Tastu 2013). This is a big drawback since unlike the means88

and variances those correlations cannot be studied by applying univariate scores to the individual89

components. On the other hand, there are scoring rules (e.g. the logarithmic score by Roulston90

and Smith 2002, applied to a multivariate probability density function) that are more sensitive to91

misspecified correlations, but require that the forecast is given in terms of a predictive density, and92

are thus not applicable in the important case of ensemble forecasts. Dawid and Sebastiani (1999)93

proposed some multivariate scoring rules that depend only on the mean vector µF and the covari-94
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ance matrix ΣΣΣF of the predictive distribution F . A particularly appealing example is the scoring95

rule (hereafter referred to as the Dawid-Sebastiani score or DSS)96

SDS(F,y) =− logdetΣΣΣF − (y−µF)
′ΣΣΣ−1

F (y−µF).

It is equivalent to the logarithmic score for multivariate Gaussian predictive distributions and re-97

mains a proper (though not strictly proper) score relative to the larger class probability distributions98

for which the second moments of all components are finite (Gneiting and Raftery 2007). In prin-99

ciple this score could be applied to empirical versions of µF and ΣΣΣF that were estimated from100

an ensemble, but unless the sample size is much larger than the dimension of the multivariate101

quantity, sampling errors can have disastrous effects on the calculation of detΣΣΣF and ΣΣΣ−1
F , and102

render this score useless in the context of ensemble forecasting (see e.g. Table 2 in Feldmann et al.103

2014). Accordingly, in Section 2 we propose a new, proper, multivariate score that is based on104

pairwise differences between all components of the multivariate quantity and that we hypothesize105

is more readily usable for ensemble forecast diagnosis. Some simulation examples are presented106

in Section 3. These will demonstrate that this new score is sensitive to misspecified correlations107

between the different components, and that it is useful for ensemble forecast diagnosis even when108

the number of ensemble members is moderate. An application of the new score in the context of109

probabilistic wind speed forecasting at several locations in Colorado (U.S.A.) simultaneously is110

presented in Section 4, before we conclude with a short discussion in Section 5.111

2. A scoring rule based on pairwise differences112

The basic idea of the class of multivariate scoring rules proposed in the following is to consider113

pairwise differences of the components of the multivariate quantity of interest. This has already114

been suggested in the context of rank histograms (e.g. Fig. 5 in Hamill 2001) and recently been115
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utilized by Feldmann et al. (2014) in a diagnostic plot to check the adequacy of a statistical model116

for spatial correlations. Denote by y the vector of observations, by yi its i-th component, and117

assume that y is a realization of the random vector Y. Adopting the concept of a variogram (also118

referred to as structure function) from geostatistics we study the quantity119

γ2(i, j) =
1
2

E|Yi−Yj|2,

where E denotes the expectation under the (multivariate) distribution of Y, which is assumed to120

have finite second moments. Denoting µi := E(Yi),σ
2
i := var(Yi) and ρi j := corr(Yi,Yj) we have121

E|Yi−Y j|2 = (µi−µ j)
2 +(σ2

i −2σiσ jρi j +σ
2
j ) (2)

which shows that γ2 depends not only on the first and second moments of the individual compo-122

nents, but also on their correlations. More generally, one can consider variograms of order p > 0123

γp(i, j) =
1
2

E|Yi−Yj|p.

The special cases p = 1 and p = 0.5 are known as madogram and rodogram, respectively (Bruno124

and Raspa 1989; Emery 2005). Variograms of order p can be defined for any multivariate dis-125

tribution for which the p-th absolute moments exist. For p 6= 2 and non-Gaussian distributions126

they can usually not be expressed as simple functions of the means, variances, and correlations of127

Yi and Yj, but they still depend on all of those quantities, and are therefore potentially useful for128

comparing the multivariate dependence structure of forecasts and observations. While condensing129

the information about the dependence of Yi and Yj into a single number γp(i, j) implies a certain130

loss of information, we shall see that utilizing these quantities in the framework of scoring rules131

results in a performance measure that is sensitive to various types of miscalibration of multivariate132

forecasts. For a given d-variate observation vector y and forecast distribution F we define the133
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variogram score of order p (VS-p)134

Sγp(F,y) =
d

∑
i, j=1

wi j
(
|yi− y j|p−EF |Xi−X j|p

)2 (3)

where Xi and X j are the i-th and the j-th component of a random vector X that is distributed ac-135

cording to F , and wi j are non-negative weights. The score Sγp measures the dissimilarity between136

approximations of the variograms of order p of observations and forecasts over all pairs of com-137

ponents of the quantity of interest. For the observations, our best guess of E|Yi−Yj|p is simply the138

powered absolute difference of yi and y j. When the forecast distribution is given in the form of an139

ensemble x(1), . . . ,x(m), the forecast variogram EF |Xi−X j|p can be approximated by140

EF |Xi−X j|p ≈
1
m

m

∑
k=1

∣∣x(k)i − x(k)j

∣∣p, i, j = 1, . . . ,d. (4)

Pairs of squared variogram differences can be emphasized or down-weighted through the choice141

of the weights. This might be motivated by a subjective decision of an expert to put focus on142

certain component combinations. In a spatial context, for example, the possibility of emphasizing143

differences corresponding to pairs of locations that are either close-by or a certain distance apart144

is related to the idea of scale-dependent verification (e.g. Jung and Leutbecher 2008). Down-145

weighting certain pairs can also help mitigating the effects of sampling error. To see this, assume146

for simplicity that the random vector Y follows a multivariate Gaussian distribution with identical147

mean in all components. Defining σ2
i j := σ2

i −2σiσ jρi j +σ2
j we then have148

p = 1 ⇒ E|Yi−Yj|p =
√

2
π

σi j, var|Yi−Y j|p =
(

1− 2
π

)
σ

2
i j

p = 2 ⇒ E|Yi−Yj|p = σ
2
i j, var|Yi−Y j|p = 2σ

4
i j

This shows that in both cases, both magnitude and variability of pairs of weakly correlated com-149

ponents are higher than for strongly correlated components. The former would therefore dominate150

the VS-p on the one hand, and introduce more variability on the other hand, which implies that151
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down-weighting pairs that are expected to have relatively weak correlations can benefit the sig-152

nal to noise ratio. In situations where there is some notion of distance between the i-th and j-th153

component (e.g. time lag as in the examples in Section 3 or spatial distance as in Section 4), cor-154

relations at short distances are typically stronger than those at longer distances. As a pragmatic155

ad hoc choice of the weights we then suggest to let them be proportional to the inverse distances156

between the corresponding components. This idea of down-weighting certain pairs of components157

is conceptually similar to covariance localization in data assimilation (Houtekamer and Mitchell158

2001; Hamill et al. 2001), where elements in the empirical covariance matrix that correspond to159

conceivably weakly or uncorrelated components are tapered down towards zero to reduce the ef-160

fects of sampling error. When the multivariate quantity consists of variables of different type (e.g.161

temperature, pressure, and relative humidity), there is no obvious notion of distance and even the162

definition of Sγp seems doubtful as we would be subtracting quantities with potentially different163

units. In that situation, one could apply Sγp to standardized components164

ỹi :=
yi−µ

(cl)
i

σ
(cl)
i

, X̃i :=
Xi−µ

(cl)
i

σ
(cl)
i

, i = 1, . . . ,d,

where µ
(cl)
i and σ

(cl)
i are the climatological mean and variance of the respective variables. This165

approach has been suggested in multivariate geostatistics in the context of variance-based cross-166

variograms, which are the equivalent of our score in the situation where components can corre-167

spond to different variables. In the geostatistical context it can be justified by the fact that pre-168

dictors derived from variance-based cross-variograms do not depend on the particular unit, and169

so the user should work with standardized variables in order to minimize the effects of sampling170

error (Cressie and Wikle 1998). In some applications there might be better, more problem-specific171

meteorological concepts to transform weather variables of different type in a way that brings them172
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all to a scale in which they can be compared, one example being the total-energy norm (e.g. Hamill173

et al. 2003).174

We now show that Sγp is proper relative to the class of the probability distributions for which175

the (2p)-th moments of all components are finite. To see this, consider first a single pair (i, j).176

For any such pair, the mean of the random variable Z := |Yi−Yj|p minimizes the expected squared177

deviation of Z from any fixed number a ∈ R, i.e.178

E(Z−E(Z))2 ≤ E(Z−a)2.

This means that the inequality (1) holds separately for any pair (i, j), but then it also holds for179

the weighted sum over all pairs, for any choice of non-negative weights. Note, however, that the180

VS-p is not strictly proper because it only depends on the p-th absolute moment of the distribution181

of component differences, and can therefore not distinguish between distributions of Z that have182

the same p-th absolute moment but different higher moments. Moreover, large-scale random183

errors that are the same for all components cancel out when differences are considered; likewise,184

a bias that is the same for all components will go undetected. The simulation study in Section 3185

shows, however, that for suitable choices of p the VS-p is quite sensitive to misspecifications of the186

correlation structure of Y. More importantly, this is still true when EF |Xi−X j|p has to be estimated187

as in eq. (4) from an ensemble that represents the predictive distribution F . This approximation188

introduces quite a bit of additional sampling error, but the effects on the score’s propriety and189

discrimination ability will be shown to be much less severe as for the Dawid-Sebastiani score.190

This makes the VS-p a favorable score in the context of ensemble forecasting, on which we focus191

in the rest of this paper.192

Before comparing it with the ES and DSS in simulations, we shall mention that the VS-p can193

be viewed as a special case of a much larger class of scoring rules. Consider the mapping gp,w̃ :194
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Rd → Rd2
defined by195

(
gp,w̃(y)

)
i j = w̃i j|yi− y j|p, i, j = 1, . . . ,d.

Choosing w̃i j =
√wi j, we can rewrite the VS-p from eq. (3) as196

Sγp(F,y) =
d

∑
i, j=1

((
gp,w̃(y)

)
i j−EF

(
gp,w̃(X)

)
i j

)2
,

which shows that the VS-p of a single, multivariate forecast is (up to the factor 1/d2) the same197

as the mean squared error (MSE) over the d2 components of the transformed forecast vector. The198

generalization of the VS-p is now obvious: instead of the MSE, we can apply any other univariate199

scoring rule to the components of gp,w̃(X) and gp,w̃(y), and take the mean over the resulting d2
200

values as an alternative score for our multivariate quantity. Or, we can apply the ES to the d2-201

variate vectors gp,w̃(X) and gp,w̃(y), rather than to X and y directly. These generalizations will202

also be studied in the subsequent section.203

3. Simulation study204

We compare the energy score, the Dawid-Sebastiani score, and the variogram score of order205

p = 0.5,1, and 2, and inverse distance weights as described above. In all experiments we generate206

n = 5000 observation vectors of dimension d, and an m-member ensemble of forecast vectors207

of the same dimension with both correct and misspecified means, variances or correlations. To208

understand the impact of representing the predictive distribution by an ensemble on the different209

scores, we consider both small (m = 20) and medium-sized (m = 100) ensembles. While a formal210

definition of being proper exists and allows one to check this property mathematically, there does211

not seem to be a commonly accepted measure of a scoring rule’s ability to discriminate between212

calibrated and uncalibrated forecasts. This is an important characteristic though, that determines213

its utility for forecast verification in practice. In this simulation study, we try to get some sense214
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of the discrimination ability of the various scores by repeating each experiment ten times and215

visualizing the respective outcomes by boxplots. Even though the scores are averaged over 5000216

cases, they still vary from one experiment to another. If the group of average scores obtained with217

calibrated forecasts is clearly separated from the one obtained with uncalibrated forecasts, we218

will interpret this as good discrimination ability of the scoring rule that was utilized. Conversely,219

if there is a strong overlap of the ranges of outcomes obtained with calibrated and uncalibrated220

forecasts, we will conclude that the scoring rule that produced these outcomes cannot reliably221

detect this particular type of miscalibration.222

Miscalibrated marginal distributions223

Although we contend that multivariate verification should focus on the correlations between224

the different components (predictive means and variances can be compared in a first step with225

univariate verification techniques), we shall start with a first experiment that compares the different226

scores with respect to their ability to detect biases and over- or underdispersion of the forecasts.227

We already noted that the VS-p is unable to detect a bias that is the same for all components, but228

we can consider a situation where this simple type of bias has been removed while an erroneous229

trend is present in the forecast means. Specifically, let the observation vectors be realizations of230

a Gaussian random vector Y of dimension d = 5 with zero mean, unit variance, and correlation231

function232

corr(Yi,Yj) = exp
(
−|i− j|

r

)
, i, j = 1, . . . ,d. (5)

In this experiment we take r = 3. If we associate each component with a time point, Y can be233

viewed as a short, stationary AR(1) process. Note that the definitions of all scores studied here234

neither exploit nor rely on this property of stationarity. Moreover, since the scores are calculated235

separately for each of the 5000 cases and averaged only afterwards, they can also be applied in236
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situations where the distribution of the observation vector differs from one case to another. The237

possibility of exploiting preliminary knowledge about the multivariate dependence structure is238

further discussed in the second example below. To compare the sensitivity of the different scores239

to misspecifications of means and variances, we generate forecasts with the same exponential240

correlation function as above and241

a) correct variances but biased means µF = (−0.5,−0.25,0,0.25,0.5)′242

b) correct means and variances243

c) correct means but too large variances σ2
i = 1.5, i = 1, . . . ,5244

d) correct means but too small variances σ2
i = 0.6667, i = 1, . . . ,5245

The corresponding boxplots are shown in Fig. 1. We note first of all that the influence of en-246

semble size is rather different from one score to another. For the ES, there is hardly any difference247

between m = 20 with m = 100. This can be an advantage if only an ensemble of very small size248

is available, but it also suggests that the ES cannot distinguish a very good representation of the249

predictive distribution F from a very sparse one. This is different for the VS-p’s, which consis-250

tently improve with increasing ensemble size, thus showing that the finite sample representation251

of F does have a noticeable effect on the score. This sampling effect, however, does not change252

the qualitative conclusions about the predictive performance of the different forecasts (this is also253

true for the examples considered below). A really substantial change of the scores due to the254

different finite representations of the predictive distribution can be observed with the DSS (note255

the different scales for m = 20 and m = 100). The approximation of µF and ΣΣΣF by empirical256

means and covariances estimated from the small ensemble is so poor that the resulting scores lead257

to false conclusions about predictive performance, favoring the over-dispersive ensemble over the258

calibrated one. For the larger ensemble, this score bias due to insufficient representation of F plays259
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a smaller role, and the DSS discriminates well between the correct and uncalibrated forecasts. The260

ES is very effective in detecting the erroneous linear trend corresponding to the forecasts simulated261

according to a), but the separation between the calibrated and over-/under-dispersive forecasts is262

less distinct. Among the different VS-p studied here, the VS-p with p = 0.5 has clearly the best263

discrimination ability. It identifies the miscalibration of the mean less clearly than the ES, but is264

more effective in detecting over- and underdispersiveness. The VS-p with p = 1 still detects all265

types of miscalibration reasonably well. It is noticeable, however, that with increasing p the ran-266

dom variations between scores obtained with identical setups become larger and larger and blur267

the systematic differences between calibrated and uncalibrated forecasts. Before we turn to the268

genuinely multivariate aspects we would like to recall that the VS-p is not strictly proper. In the269

present situation, for example, the effects of an erroneous trend and underdispersion can cancel out270

(for p = 2 this can be seen directly from eq. (2)). We therefore emphasize again that an analysis of271

the marginal distributions by means of univariate scores should precede the study of multivariate272

properties.273

Misspecified correlation strength274

In our second experiment we focus on the correlation structure of the multivariate quantity un-275

der consideration. We study the ability of the different scores to detect whether the correlations276

between the different components of the forecast vectors are too weak, adequate, or too strong277

compared to the corresponding correlations of the observation vectors. Moreover, we study the278

effect of increasing the dimension from d = 5 to d = 15 on the different scores. In both cases, we279

consider again a zero mean, unit variance AR(1) process with correlation function given in (5).280

For the observation vectors we choose r = 3 as before and compare ensemble forecasts simulated281

with the same correlation model but r = 2,r = 3, and r = 4.5. The boxplots in Fig. 2 for the282
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ES confirm the conclusion of Pinson and Tastu (2013) that the ES can hardly discriminate multi-283

variate forecasts that differ only with respect to their correlations between individual components.284

For the DSS the conclusion is as in the first experiment. It discriminates well between calibrated285

and uncalibrated forecasts if the ensemble that represents the predictive distribution is sufficiently286

large. A small ensemble, however, results in an inaccurate approximation of µF and ΣΣΣF , and the287

corresponding DSS leads to misguided inference. This representation issue is much less severe288

for the VS-p, and for p = 0.5 and p = 1 it discriminates well between correct and incorrect corre-289

lation strengths. For p = 2 the discrimination ability is still better than for the ES but overall not290

very satisfactory with random differences between identical setups having the same magnitude as291

systematic score differences due to miscalibration. Increasing the dimension from d = 5 to d = 15292

has a slightly negative effect on the discrimination ability of the VS-p. This may be somewhat293

surprising since a larger dimension entails more data that are used for the calculation of Sγp . How-294

ever, since our definition of the VS-p in eq. (3) does not make any assumption (e.g. stationarity295

in a time series or spatial context) about the correlation structure of forecasts and observations,296

increasing the number of summands in (3) does not lead to an averaging of sampling error. If297

one was absolutely sure that some additional structural assumption is justified, i.e. that the set of298

all pairs (i, j) can be represented as a union of disjoint subsets I1, . . . , IN such that the component299

differences corresponding to the pairs in each subset have the same p-th absolute moment, one300

could replace definition (3) by301

Sγp(F,y) :=
N

∑
k=1

wk

(
∑

(i, j)∈Ik

|yi− y j|p− ∑
(i, j)∈Ik

EF |Xi−X j|p
)2

This way, additional structural information could be exploited and an increase of d would then302

likely reduce sampling error and improve the discrimination ability of the score. In the present303

example, the simulated AR(1) process is stationary and proceeding as described above with Ik :=304
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{(i, j) : |i− j|= k} would be justified. In general, however, such information is not available, and305

while simplifying assumptions are common and appropriate in statistical modeling, we contend306

that verification methods should avoid unwarranted preliminary assumptions about forecasts and307

observations as far as possible. We therefore recommend retaining the definition in eq. (3), even308

though it is less favorable with respect to the VS-p’s discrimination ability. The fact that the309

discrimination ability in the present example even gets slightly worse from d = 5 to d = 15 can310

probably be explained by the fact that the fraction of pairs of components in Sγp(F,y) with rather311

weak correlations increases, and thus more variability is introduced into the calculation of the312

score.313

Misspecified correlation model314

In the third experiment, we vary the entire correlation model rather than just the correlation315

strength. We now consider only the case d = 15 and simulate observations with zero mean, unit316

variance and correlation function317

i) corr(Yi,Y j) =
(

1+ |i− j|
3

)−1
,318

ii) corr(Yi,Yj) = exp
(
− |i− j|

4

)
·
(

0.75+0.25cos
(
|i− j|π

2

))
.319

Both of them yield correlations at lag 1 that are very similar to the exponential model (5) with320

r = 3. Model i), however, has much stronger correlations at larger lags, and model ii) has a periodic321

component that makes it oscillate around this exponential reference model. Can the VS-p detect322

those difference between model (5) and model i) and ii), respectively, even though our proposed323

weighting scheme down-weights larger lags? Figure 3 confirms many of the conclusions from324

the preceding experiment. The ES again lacks sensitivity to misspecifications of the correlation325

structure while the VS-p’s distinguish much better between the correct and the incorrect correla-326
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tion model. Again however, the discrimination ability depends on p, with smaller values yielding327

significantly better results. The DSS has similar issues in this example as in those discussed above.328

Their magnitude drops dramatically when passing from 20 to 100 ensemble members, although329

the underlying multivariate distribution is the same. In the case where the observations have long330

range dependence, both ensemble sizes are insufficient to reduce this score’s representation bias331

enough to yield the proper ranking between correct and incorrect forecasts. In the example with332

the oscillating correlation model, the DSS yields the correct ranking and separates the two cases333

very well. However, it may well be that this is simply an example where the bias due to the finite334

representation of the predictive distribution favors the correct ranking by chance.335

Misspecified generating process336

When we introduced the VS-p in Section 2, we emphasized that this family of scoring rules is337

proper, but not strictly proper. It is based only on the p-th absolute moment of differences between338

all pairs of components. It is clear that biases that are the same for all components cancel out.339

It is also clear that certain combinations of misspecifications (e.g. overestimation of correlation340

strength and overestimation of marginal variances) can partially or fully cancel out. But even if341

it has been assured that the marginal distributions are calibrated, the p-th absolute moment of342

component differences does in general not fully characterize the multivariate dependence. How343

good is the VS-p in distinguishing forecasts that are entirely correct (i.e. have been generated344

by the same process as the observations) from forecasts that have correct means, variances, and345

correlations, but have been generated by a completely different mechanism? It can be expected346

that the answer depends on the particular generating process, and we are careful to make general347

claims as to this issue. Yet it is instructive to study at least one such example. We simulate348

observations as follows:349
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1. draw a random number ν from a Poisson distribution with parameter λ = 8350

2. draw ν locations t1, . . . , tν from a uniform distribution on the interval [0,16]351

3. denoting by (·)+ the maximum of 0 and the function in brackets, define352

yt =

√
15
8
·

ν

∑
i=1

(
1− (t− ti)2)

+
, t = 1, . . . ,15 (6)

One can think of t1, . . . , tν as storm centers which have an influence on all locations within a353

radius of one unit, expressed by the influence function (1− x2)+. The different local storms are354

then added up to the final outcome. This process is a special case of a so called shot noise process.355

Using results from Matérn (1986, Ch. 3.3), one can show that with the specific choices made above356

y is a sample of a stationary time series with mean
√

5/3, variance 1, and correlation function357

corr(Yi,Yj) =
(

1+ 3|i− j|
2 + |i− j|2

4

)
·
(

1− |i− j|
2

)3

+

We now compare forecasts that were generated in the same way as this shot noise observation358

process with forecasts that have the same means, variances, and correlations, but were simulated359

from a multivariate Gaussian distribution. An illustration of one sample path, respectively, on360

the full interval [1,15] is provided in the supplemental material to this paper. The results of this361

comparison are depicted in Figure 4. A few conclusions are very consistent with what we already362

observed before. The discrimination ability of the ES is rather poor, and the DSS favors the363

incorrect model as a result of insufficient approximation of µF and ΣΣΣF , even in the case where364

m = 100. Recall that the DSS depends on the predictive distribution only through its component365

means and variances, and inter-component correlations, so for a perfect approximation of µF and366

ΣΣΣF we would expect the DSS to be indifferent towards the particular forecast generation process.367

The same is true for the VS-2, while the effect of the generation process on the VS-1 and VS-368

0.5 is not quite as obvious. For the first time, we observe problems related to the finite sample369
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representation of the predictive distribution also with the VS-2 and VS-1. The good discrimination370

ability of the VS-0.5 may be based on several factors. On the one hand, the 0.5-th absolute moment371

of differences seems to be very informative about the generating process. It is not clear though,372

whether this is specific to the present example or whether this is true in general. On the other373

hand, we have already observed that the choice p = 0.5 entails less sampling variability compared374

to larger values, and this likely contributes to the favorable performance of the VS-0.5 in the375

present example as well.376

Sensitivity of the variogram score of order p to the choice of weights377

So far, we have always chosen the weights in (3) proportional to the inverse distance between378

the components. We have argued in Section 2 that such a choice is reasonable whenever there is379

some natural notion of distance, and correlations between components are expected to decrease380

with this distance. Yet, this choice is quite ad hoc, and it is natural to ask how sensitive the dis-381

crimination ability of the VS-p is with regard to the choice of weights, and if other choices yield a382

similar or even better performance. To answer this question, we repeat the first two experiments,383

this time considering only the case where d = 15 and m = 20. We restrict our attention to the384

VS-0.5 but study two alternative weighting schemes: no weighting at all (i.e. wi j ≡ 1) and a kind385

of localization scheme where wi j =
(
1−

( |i− j|
3

)2)
+

, i.e. pairs of components more than 3 units386

apart are not considered at all. The results in Figure 5 are as one might have expected. Misspec-387

ifying the range parameter in our exponential correlation model (5) affects correlations between388

all pairs of components. As pointed out in Section 2, close-by, strongly correlated components389

have a more favorable signal to noise ratio, and so it is not surprising that the localization weight-390

ing scheme has the best, and the unweighted VS-0.5 has the worst discrimination ability. The391

same conclusion holds in the experiment where the correlation function of the observations has392
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a periodic component. Even at short lags, this correlation functions differs quite strongly from393

the simple exponential model, and focusing on close-by component pairs therefore benefits the394

score’s discrimination ability. Differences between the long range correlation model and the expo-395

nential model, on the contrary, are more noticeable for pairs of components that are further apart,396

and hence the unweighted VS-0.5 performs best. Overall, we conclude that if prior knowledge397

about correlations is available, some sort of localization scheme with appropriately chosen cut-off398

radius should be used. In the absence of such knowledge, the inverse distance weighting scheme399

seems to be a good compromise. We finally note that even the unweighted score permits better400

identification of misspecified dependence structures than the ES.401

Generalizations of the variogram score of order p402

At the end of Section 2 we pointed out that the VS-p defined in eq. (3) can be viewed as a spe-403

cial case of a larger class of scoring rules which transforms both forecast and observation vectors404

to d2-dimensional vectors of weighted, powered, absolute differences between the components of405

the original vectors. Here, we fix p = 0.5 and define the weight vector w̃ of the transformation406

g0.5,w̃ through w̃i j = 1/
√
|i− j|. With these choices, the VS-0.5 with inverse distance weights is407

(up to a constant factor) the same as the mean squared error (MSE) of the componentwise means408

of the transformed forecasts with respect to the transformed observations. As alternative scores409

we consider the mean absolute error (MAE) of the componentwise medians of the transformed410

forecasts, the mean continuous ranked probability score (MCRPS) over all components of the411

transformed forecasts, and the ES of the vector of transformed forecast. Figure 6 shows results412

for the setting of our second experiment above with d = 15 and m = 20, where the observation413

is generated according to a correlation function with long range dependence, or a periodic com-414

ponent, respectively, and the scores are used to distinguish correct forecasts from those where an415
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exponential correlation model is used for the forecasts. The main point to note is that all scores416

are able to distinguish the correct from the incorrect correlation model, showing that it is really417

the transformation g0.5,w̃, rather than the particular score applied to the transformed vectors, that418

is crucial for detecting misspecified dependence structures. With the MAE and MCRPS being419

particular discriminative in the example with long range dependence and the ES faring best in the420

example with a periodic component, there is no clear ranking among the different scores. The421

MSE, the score that corresponds to the VS-0.5, demonstrates good discrimination ability in both422

examples. Its preference over the other options is by no means imperative, but it seems to be a423

good compromise, and thus a reasonable standard choice.424

4. Evaluating multi-site wind speed forecasts425

We finally apply our score in a data example to evaluate and compare statistically calibrated,426

probabilistic forecasts of wind speeds at five major wind park locations in the state of Colorado427

(U.S.A.). Specifically, we consider the period from 1 January to 31 December 2013, use 80-m428

wind-speed forecasts from the 2nd-generation GEFS reforecast data set (Hamill et al. 2013) and429

the corresponding reanalyses for both calibration and verification. The reforecast ensemble has430

11 members and was initialized once daily at 0000 UTC. We study 80-m wind-speed predictions431

with lead times 24h, 48h, and 72h at the grid points that are closest to432

• Cedar Point Wind Farm (250 MW, operational since 2011)433

• Cedar Creek Wind Farms I and II (550 MW, operational since 2007/2010)434

• Peetz Table Wind Energy Center (430 MW, operational since 2001/2007)435

• Colorado Green Wind Farm (162 MW, operational since 2003)436

• Cheyenne Ridge Wind Project (under development, project size 300-600 MW)437

21



As explained above, the ensemble forecasts f1s, . . . , f11s, s ∈ S , where S denotes the set of438

the five wind park locations, can be interpreted as a sample from the multivariate distribution439

that describes the simultaneous predictions. The raw model output, however, often suffers from440

systematic biases and typically fails to fully represent prediction uncertainty (Hamill and Colucci441

1997). To calibrate the marginal predictive distributions, we follow Thorarinsdottir and Gneiting442

(2010) and fit a heteroscedastic regression model to past forecast-observation pairs that turns the443

ensemble mean f̄s and the ensemble variance S2
s at location s into a predictive truncated normal444

distribution445

Ys| f1s, . . . , f11s ∼N0(as +bs f̄s,cs +dsS2
s ) (7)

for the observed wind speed Ys at s. A separate model is fitted for each location, each forecast446

lead time, and each month of the verification period from 1 January 31 December 2013. For447

each month, forecasts and observations from the same, the preceding, and the subsequent month448

in the years 2010, 2011, and 2012 are used as training data for the model fitting procedure (for449

details about that procedure we refer to Thorarinsdottir and Gneiting 2010). Once the parameters450

as,bs,cs,ds for each month, location, and lead time are determined, a predictive distribution for the451

day under consideration can be obtained by plugging the corresponding ensemble mean and vari-452

ance into equation (7). Diagnostic plots (not shown here) confirm that the univariate probabilistic453

forecasts obtained in this way are calibrated, i.e. they are unbiased and represent the prediction454

uncertainty adequately.455

The post-processing scheme just described only addresses the marginal distributions. In our456

particular example, however, power network operators might be interested in whether low wind457

speeds (and hence low wind power production) at one wind park will be compensated by higher458

wind speeds at the other wind parks, or whether wind speeds will be low at all wind parks simul-459

taneously. To account for this multivariate aspect of our prediction problem and address correla-460
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tions between the forecasts at the different locations, we use the ensemble copula coupling (ECC)461

technique (Schefzik et al. 2013) which turns the 5 marginal predictive distributions back into an462

ensemble f̃1s, . . . , f̃11s, s ∈S that has the same rank correlation structure as the original ensemble463

but calibrated margins. Specifically, if Fs denotes the predictive, truncated normal CDF at location464

s, calibrated ensemble forecasts are obtained via465

f̃1s = F−1
s

(
ρs(1)

12

)
, . . . , f̃11s = F−1

s

(
ρs(11)

12

)
, s ∈S , (8)

where ρs(k) = rank( fks), k = 1, . . . ,11. With other words, the original forecasts are replaced by466

quantiles (this particular way of sampling is referred to as ECC-Q) of the calibrated marginal dis-467

tributions in such a way that the ordering of the ensemble member forecasts remains unchanged.468

In this way, the (flow-dependent) rank correlation information of the raw GEFS ensemble is pre-469

served.470

Does this preservation of rank correlations really yield noticeably better multivariate forecasts471

than a sampling scheme in which ρs is a random perturbation of the set {1, . . . ,11} (i.e. no spatial472

correlations) or one in which ρs is the identity (i.e. maximal spatial dependence)? We compute473

those alternative, marginally calibrated ensembles (“Random-Q”, “Ordered-Q”) as well, and use474

the ES, the VS-0.5, and the VS-1 to evaluate and compare the corresponding multivariate wind475

speed forecasts with those of the raw and ECC-Q ensemble. Again, we use inverse distance476

weights for the VS-p where distance is now the geographical distance (in km) between the wind477

farm locations. Since in Section 3 the empirical DSS turned out to be unreliable for small ensemble478

sizes and the VS-2 was always less discriminative than the VS-0.5 and VS-1, only the two latter479

are considered here as alternatives to the ES. In order to facilitate the comparison between the three480

different scores, we turn them into skill scores with respect to the raw ensemble. That is, instead of481

the energy score ES∗ for method ’∗’ we state the energy skill score ESS∗ = 1−ES∗/ESens which482
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measures the increase in predictive performance compared to the raw ensemble (likewise for the483

variogram scores). All skill scores in Table 1 agree that ECC-Q yields the most skillful, multivari-484

ate probabilistic forecasts. The Ordered-Q ensemble, for which wind speeds are simultaneously485

low or high at all locations, is less skillful than the uncalibrated ensemble; the corresponding mul-486

tivariate structure is clearly inappropriate. The comparison between ECC-Q and Random-Q is487

more interesting, and confirms the above findings about the respective sensitivity of the ES and488

the VS-p to miscalibration. The ESS yields a somewhat clearer distinction between the raw and489

the ECC-Q ensemble, which differ in their marginal distribution but have the same rank correla-490

tions. The Random-Q ensemble, however, scores almost as well as the ECC-Q ensemble, despite491

its doubtful assumption of spatial independence. Under the VS-0.5 and VS-1, on the contrary,492

the Random-Q ensemble fares distinctly worse than the ECC-Q ensemble, and has even negative493

skill for lead times larger than 24h. Those two ensembles yield identical forecasts at each location494

individually, but their components have different rank correlations. Again, the VS-p can detect495

those differences more clearly.496

5. Discussion497

In their recent review on probabilistic forecasting, Gneiting and Katzfuss (2014) note as one out498

of eight key issues for future research that499

“There is a pressing need for the development of decision-theoretically principled500

methods for the evaluation of probabilistic forecasts of multivariate variables.”501

When the focus is on the correlation structure and the mean and covariance matrix of the predictive502

distribution are given in closed form, the DSS is an excellent choice. The examples in Section 3503

show, however, that the usage of this score can be problematic when the probabilistic forecasts are504

represented by an ensemble of limited size, and empirical versions of the predictive mean vector505
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and covariance matrix have to be used. In spite of being proper, the DSS can then lead to entirely506

wrong conclusions about predictive performance, which suggests that this scoring rule is far from507

being fair in the sense of Fricker et al. (2013). In this paper, we have presented a new class of508

multivariate scores based on powered differences between pairs of components of the multivariate509

quantity, denoted as variogram scores of order p (VS-p). In our simulation studies the VS-p was510

also negatively affected by the sampling error due to representing the predictive distribution by a511

(possibly small) ensemble. In the majority of cases, however, it led to the correct conclusions about512

predictive performance, which suggests that it is much closer to being fair than the DSS. Moreover,513

it is more successful than the ES in distinguishing forecasts with different correlation structures.514

Three different choices of powers p were studied for the VS-p, and it was found that the best results515

are obtained with p = 0.5, while p = 2 was clearly suboptimal. Would a VS-p with p < 0.5 have516

even better properties? At least for Gaussian predictive distributions, a square-root transformation517

is likely already the best choice since the distribution of |Xi−X j|0.5 is almost perfectly symmetric518

and thus has much better sampling properties than the strongly skewed distribution that comes with519

the choice p= 2 (Cressie and Hawkins 1980). If the predictive distribution itself is already skewed,520

however, then smaller powers may indeed be favorable to obtain a near symmetric distribution of521

|Xi−X j|p.522

In Section 4 we considered a data example with statistically post-processed wind speed forecasts.523

Scoring rules in general, and the VS-p in particular, may however also be useful diagnostic tools524

in the development process of ensemble prediction systems. In the context of data assimilation,525

for example, it is important that the ensemble adequately represents the variances and covariances526

between different variables at different locations. Comparing different ensembles via scoring rules527

rather than empirical covariances (averaged over a certain time period) has the advantage that the528

former evaluate every time point separately and average the scores rather then covariances. This529
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is more adequate if those covariances are flow-dependent. Moreover, if the scores are normalized530

in a reasonable way (for the VS-p this could be done by requiring that the weights sum to one531

on each day), even the space dimension may change over time, and averaging the corresponding532

scores would still make sense. If the distribution of the observation errors is known, those can be533

taken into account by simulating a sample εil, i = 1, . . . ,d, l = 1, . . . ,M of such errors and adding534

them to the ensemble forecasts. The empirical version of the VS-p then becomes535

Sγp(F,y) =
d

∑
i, j=1

wi j

(
|yi− y j|p−

1
mM

m

∑
k=1

M

∑
l=1

∣∣ f (k)i + εil− f (k)j − ε jl
∣∣p)2

,

and by choosing M - the number of simulated observation error vectors - large enough, one can536

reduce at least part of the additional variability that is introduced into the score. It remains to537

be seen if the signal to noise ratio in those applications is large enough for this score to be still538

sufficiently discriminative.539

We think that the class of VS-p proposed here is a useful contribution to address the above540

mentioned research issue of decision-theoretically principled methods for multivariate forecast541

evaluation. It has certain limitations, resulting from the fact that is not strictly proper as discussed542

in Section 2. Given the strong increase in the number of degrees of freedom with the dimen-543

sion of the quantity to be forecast it is unlikely, however, that there exists a single multi-variate544

score that serves all purposes. We strongly recommend to always consider several different scores545

before drawing conclusions. Some of the limitations of the VS-p can be addressed by studying546

the ES (which is more sensitive to misspecifications of the predictive mean and less affected by547

the finite representation of the predictive distribution) or univariate scores for the marginal distri-548

butions alongside with our VS-p. Focusing on differences between components is probably the549

most natural, but by no means the only possible transformation of the multivariate quantity that550

leads to a multivariate score that is sensitive to correlations between components. In some appli-551
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cations, studying composite quantities like minima, maxima, or averages over several locations or552

lead times (Berrocal et al. 2007; Feldmann et al. 2014), or indexes that involve multiple quanti-553

ties (Wilks 2014) is a natural way to turn multivariate quantities into univariate ones that can be554

evaluated by standard univariate scores. This way, specific (and practically relevant) aspects of the555

multivariate predictive distribution can be evaluated, and this sort of verification is another rec-556

ommended supplement to general purpose multivariate scores like the ES or the VS-p presented557

here.558
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TABLE 1. Skill scores of the ECC-Q, Random-Q, and Ordered-Q ensembles with respect to the raw ensemble.

lead time 24h lead time 48h lead time 72h

ESS VSS-0.5 VSS-1 ESS VSS-0.5 VSS-1 ESS VSS-0.5 VSS-1

ECC-Q 0.184 0.171 0.151 0.119 0.119 0.096 0.063 0.036 0.027

Random-Q 0.175 0.047 0.088 0.108 -0.020 -0.017 0.051 -0.087 -0.063

Ordered-Q -0.284 -0.147 -0.062 -0.420 -0.231 -0.145 -0.493 -0.461 -0.299
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